N-subjettiness "tagger" with grooming Comparisons of performance with various grooming tools: Pruning, trimming and filtering

David W. Miller

Enrico Fermi Institute

July 27, 2011

D. W. Miller (EFI, Chicago)

Introduction

N-subjettiness, τ_N

BOOST 2011 offered an excellent opportunity to present the fantastic new results on jet mass to the wider community. It also allowed for in depth discussion that highlighted what that community might most like to see measured and understood in the data.

The list is long, but it is clear that N-subjettiness is near the top of that list for one simple reason:

500 GeV < pt < 600 GeV

Grooming comparisons

Some initial indications suggest that some of the **grooming** procedures may affect the ability to utilize *N*-subjettiness as a top-tagger. The goal of these plots is to demonstrate what that affect may be with the BOOST 2010 benchmark samples, and then to see how much pile-up affects that result.

Configuration using TopTag.py:

- Un-groomed jets: anti- k_t , R = 1.0 jets
- **Pruned jets:** anti- k_t , R = 1.0 parent jets, pruned using C/A with $z_{\text{cut}} = 0.05$ and $R_{\text{cut}} = 0.1$
- Filtered jets: C/A, R = 1.0 parent jets, filtered using $R_{\text{filt}} = 0.35$ and $N_{\text{subjets}} = 3$.
 - However, in the implementation in SPARTYJET, I do not see y_{cut} or μ (the symmetry and mass drop cuts)....

• Trimmed jets: anti- k_t , R = 1.0 parent jets trimmed using $R_{\text{subjet}} = 0.35$ and $p_{T,j1}/p_{T,J} < 0.05$.

D. W. Miller (EFI, Chicago)

Mass distributions $500 < p_T < 600 \text{ GeV}$

Using the $t\bar{t}$ and di-jet samples found on the TWiki, here, plot just the raw jet mass for each collection.

Mass distributions $500 < p_{\rm T} < 600 \ GeV$

Efficiency of the mass range preselection is fairly stable:

- $150 < m^{\text{jet}} < 250 \text{ GeV}$: 80% (ungroomed), 76-78% (groomed)
- $135 < m^{\text{jet}} < 215 \text{ GeV}$: 78% (ungroomed), 76-78% (groomed)

D. W. Miller (EFI, Chicago)

τ_3/τ_2 *distributions* 500 < $p_{\rm T}$ < 600 *GeV*

The relative positions of the peaks shift slightly, both with grooming and with the different mass windows applied to the parent jets.

D. W. Miller (EFI, Chicago)

Tagger performance (I)

 $500 < p_{\rm T} < 600 \; GeV$

Efficiency is now calculated on a per jet basis with respect to the total number

of jets before the mass selection (earlier version was w.r.t. after the mass selection).

Achieve a very similar performance to Thaler/Van Tilburg for the full range.

D. W. Miller (EFI, Chicago)

Tagger performance (II) $500 < p_T < 600 \text{ GeV}$

The smaller mass window is more appropriate for groomed jets, while the larger (and higher) window is better for the ungroomed jets.

D. W. Miller (EFI, Chicago)

Tagger performance (III) $500 < p_T < 600 \text{ GeV}$

The mass window used by Jesse and Ken is even slightly better for the intermediate efficiency range ($\sim 50\%$).

D. W. Miller (EFI, Chicago)

Tagger performance (IV) $500 < p_T < 600 \text{ GeV}$

With pruning and the same mass window for both groomed and ungroomed jets:

- Reduction of up to 30-50% in mis-tag rate for the same efficiency.
- 5-12% absolute improvement in efficiency for the same mis-tag rate.

D. W. Miller (EFI, Chicago)

Tagger performance (V)

 $500 < p_T < 600$ GeV, with optimized mass window for ungroomed jets

With grooming and an optimized mass window for ungroomed jets:

- Improvement is more modest, and only achieved for the more "aggressive" pruning.
- 10-20% reduction in mis-tag rate for the same efficiency.
- 5% absolute improvement in efficiency for the same mis-tag rate.

D. W. Miller (EFI, Chicago)

Summary and conclusions

Summary and next steps

So far...

- Have performed a first look at the impact of grooming on N-subjettiness
 - Non-optimal configuration for filtering.
- Somewhat significant relative improvement is observed for pruning, but details depend on the mass window around the top.
 - Implies some sensitivity to the detector-level mass resolution.
 - An optimized mass window for the ungroomed jets compared to that for groomed jets reduces the magnitude of the improvement.

Moving forward

- The real aim is to assess the impact of pile-up on *N*-subjettiness and then how the various grooming tools mitigate those affects.
- Can more aggressive filtering / trimming perform similar to pruning?
- How does grooming **after** computing τ_3/τ_2 perform?
- In the process of organizing pile-up samples with Stefan and Steffen. Hopefully we can mix them up soon!

Backup slides and additional information

Additional Material

D. W. Miller (EFI, Chicago)

N-subjettiness "tagger" with grooming

July 27, 2011 1 / 4

N-subjettiness, τ_N

Measures the extent to which a given jet is likely to be composed of N subjets by first identifying a set of subjets and then comparing the energy flow in the jet to the direction of these subjets [1].

$$\tau_{N} = \frac{1}{d_{0}} \sum_{k} p_{T,k} \min \left\{ \Delta R_{1,k}, \Delta R_{2,k}, \cdots, \Delta R_{N,k} \right\}$$
(1)
$$d_{0} = \sum_{k} p_{T,k} R$$
(2)

The sum runs over the *k* constituent particles in a given jet where $p_{T,k}$ are their transverse momenta, and $\Delta R_{j1,k} = \sqrt{\delta y_{j1,k}^2 + \delta \phi_{j1,k}^2}$ is the distance in $\Delta y \times \Delta \phi$ between a candidate subjet *j*1 and a constituent particle *k*.

\rightarrow Uses <u>ratios of momenta</u> and <u>exclusive subjets</u> \rightarrow Sensitive to subjet multiplicity, not so much kinematics

D. W. Miller (EFI, Chicago)

Backup slides and additional information

Efficiency vs. mis-tag for ungroomed jets

Bin #	Bin index	T	Bin value	I	Eff	I	Mis-tag
0	1 0	ī.	-0.014000	ī	0.000000	ī	0.000000
1	1	1	0.00000	1	0.000000	1	0.000000
2	2	1	0.014000	1	0.000000	1	0.000000
3	3	1	0.028000	1	0.000000	1	0.000000
4	4	1	0.042000	1	0.000000	1	0.000000
5	5		0.056000	I.	0.000068	I.	0.000000
6	6		0.070000	I.	0.000339	I.	0.000000
7	7		0.084000	I.	0.000543	I.	0.000077
8	1 8	1	0.098000	I.	0.001696	I.	0.000077
9	1 9	1	0.112000	1	0.003257	1	0.000077
10	10	1	0.126000	1	0.005496	1	0.000232
11	11	1	0.140000	1	0.009974	1	0.000232
12	1 12		0.154000	1	0.018387	1	0.000232
13	1 13		0.168000	1	0.02/2/5	1	0.000310
14	1 14	5	0.182000	÷	0.039555	÷	0.000310
15	1 15	5	0.196000	÷	0.052649	÷	0.000620
10	1 10	1	0.210000	÷	0.067779	÷	0.000775
1/	1 1/	1	0.224000	÷	0.085080	÷	0.00100/
10	1 10	1	0.2530000	÷	0.102314	÷	0.001394
19	1 20	1	0.252000	÷	0.142003	÷	0.001782
20	20	÷	0.280000	÷	0.167718	÷	0.002324
22	22	1	0.294000	÷	0.190108	÷	0.002176
23	1 23	1	0.308000	÷	0.211615	÷	0.003796
2.0	2.5	÷	0.322000	÷	0.231902	÷	0.004415
25	25	÷	0.336000	÷.	0.255648	÷.	0.005190
26	1 26	÷	0.350000	÷.	0.277292	÷.	0.005887
27	27	÷.	0.364000	Ť.	0.300156	Ť.	0.006894
28	28	i.	0.378000	÷.	0.324038	÷.	0.007436
29	29	1	0.392000	1	0.346021	1	0.008366
30	30	1	0.406000	1	0.368885	1	0.009605
31	31	1	0.420000	1	0.390257	1	0.010689
32	32	1	0.434000	1	0.411900	1	0.011541
33	33	1	0.448000	1	0.430898	1	0.013168
34	34	1	0.462000	1	0.451387	1	0.014562
35	35	1	0.476000	1	0.469978	1	0.016112
36	36		0.490000	I.	0.487686	I.	0.017738
37	37	1	0.504000	I.	0.504987	I.	0.019675
38	38	1	0.518000	1	0.522898	1	0.021611
39	1 39	1	0.532000	1	0.538639	1	0.024012
40	1 40	1	0.546000	1	0.554040	1	0.025639
41	41		0.560000	1	0.569102	1	0.028428
42	42		0.574000	1	0.583/5/	1	0.030674
4.3	4.3	1	0.588000	÷	0.59/123	÷	0.032765
44	44	1	0.602000	4	0.610421	4	0.035399
45	45	÷	0.630000	÷	0.022295	÷	0.03849/
40	40	÷	0.644000	÷	0 644820	÷	0.041849
48	. 47	÷	0.658000	÷	0.653776	÷	0.048412
49	40	÷	0.672000	÷	0.663274	÷	0.052208
50	1 50	î.	0.686000	÷	0.672637	÷	0.055229
51	51	÷.	0.700000	÷	0.680779	÷	0.058869

D. W. Miller (EFI, Chicago)

Backup slides and additional information

Efficiency vs. mis-tag for pruned jets

Bin #	Bin index	l	Bin value	I	Eff	I	Mis-tag
0	1	1	0.000000	I	0.000000	I	0.000000
1	2	Ľ.	0.013000	1	0.000093	I.	0.000000
2	3	Ľ.	0.026000	1	0.000841	I.	0.000000
3	4	i.	0.039000	Ť.	0.002709	i.	0.000000
4	5	i.	0.052000	Ť.	0.007193	i.	0.000000
5	6	i.	0.065000	÷.	0.014573	÷.	0.000000
6	7	Ľ.	0.078000	1	0.022326	I.	0.000000
7	8	Ľ.	0.091000	1	0.034844	I.	0.000132
8	9	Ľ.	0.104000	1	0.048762	I.	0.000397
9	10	Ľ.	0.117000	1	0.065577	I.	0.000397
10	11	Ľ.	0.130000	1	0.085100	I.	0.000397
11	12	Ľ.	0.143000	1	0.104157	I.	0.000397
12	13	Ľ.	0.156000	1	0.125922	I.	0.000794
13	14	Ľ.	0.169000	T.	0.145446	Ť.	0.000794
14	15	i.	0.182000	Ť.	0.166371	i.	0.000926
15	16	i.	0.195000	Ť.	0.190659	i.	0.001455
16	17	i.	0.208000	Ť.	0.215787	i.	0.001852
17	18	i.	0.221000	Ť.	0.238580	i.	0.002117
18	19	i.	0.234000	Ť.	0.262774	i.	0.002778
19	20	i.	0.247000	Ť.	0.283045	i.	0.003307
20	21	i.	0.260000	Ť.	0.303129	i.	0.003836
21	22	i.	0.273000	Ť.	0.323494	i.	0.004630
22	23	Ľ.	0.286000	1	0.344325	I.	0.005292
23	2.4	Ľ.	0.299000	1	0.362447	I.	0.006350
24	25	Ľ.	0.312000	1	0.380757	I.	0.006879
25	26	i.	0.325000	÷.	0.398786	÷.	0.007805
26	27	Ľ.	0.338000	1	0.417095	I.	0.008467
27	28	Ľ.	0.351000	1	0.434657	I.	0.009260
28	29	Ľ.	0.364000	1	0.452032	I.	0.010319
29	30	Ľ.	0.377000	1	0.469594	I.	0.011113
30	31	L.	0.390000	1	0.484073	I.	0.012436
31	32	L.	0.403000	1	0.501355	I.	0.013626
32	33	L.	0.416000	1	0.516674	I.	0.015081
33	34	L.	0.429000	1	0.531154	I.	0.016007
34	35	L.	0.442000	1	0.545446	I.	0.017595
35	36	L.	0.455000	1	0.558991	I.	0.018918
36	37	L.	0.468000	1	0.571789	I.	0.020241
37	38	L.	0.481000	1	0.586081	I.	0.022093
38	39	L.	0.494000	1	0.598319	I.	0.023945
39	40	L.	0.507000	1	0.610929	I.	0.025400
40	41	L.	0.520000	1	0.623914	I.	0.027252
41	42	L.	0.533000	1	0.633816	I.	0.029898
42	43	L.	0.546000	1	0.644839	I.	0.032147
43	4.4	L.	0.559000	1	0.654647	I.	0.033470
44	45	L.	0.572000	1	0.664549	I.	0.035851
45	4.6	L	0.585000	1	0.673891	I.	0.038894
46	47	L	0.598000	1	0.680897	I	0.042334
47	48	L	0.611000	1	0.688277	I	0.046170
48	49	L	0.624000	I.	0.696030	I.	0.049213
49	50	L	0.637000	I.	0.702943	I.	0.052652
50	51	5	0.650000	1	U./09201	1	0.056092

D. W. Miller (EFI, Chicago)

J. Thaler and K. Van Tilburg. Identifying Boosted Objects with N-subjettiness. page 26, November 2010.